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Abstract 

Nigeria currently carrying out economic reforms is under the surveillance of 

institutional investors. To construct the market discount function through its yield 

curve, we applied the extended functional Nelson-Siegel parsimonious function with 

time-decay parameters to the Eurobond data to employ flexibility of the model and 

estimate the time varying parameters. In order to present a deep investigation of the 

Euro-bond market by reason of time to maturity, our contribution is anchored on 

following objectives: (i) construct the discount function (ii) investigate the limiting 

behavior of the yield curves and (iii) predict the in-sample yield. The data presented 

involves the daily closing of the Nigerian Eurobond yield covering January to 

December 2021 and 2022. The data was fitted to the observed Nigerian Eurobond 

yield curve to model the discount function. The ordinary least square method is used 

for the analysis and the estimated parameters were used to compute the in-sample 

yield. Test of goodness of fit was conducted showing that the model fits in well to the 

observed data demonstrated by the model’s R-square adjusted through the predicted 

yields after obtaining the two decay factors. This paper has implications on life 

insurance products associated with minimum guaranteed benefit schemes for the 

insured. Based on the terms and conditions of the contract, the insured pays regular 

premium invested in debt instruments and receives benefit at death or at maturity of 

the policy depending on the market performance of the fund. There is a guaranteed 

benefit which the insured earns irrespective of the performance of the life fund. The 

insurer would then pay the guaranteed amount even if the benefit eventually drops 

below the guaranteed amount. Given the discount 𝛿(𝜏)and benefit∅, the present value 

of future death benefits is modeled as 𝑃𝑉𝐹𝐵 = ∅1𝛿(1) + ∅2𝛿(2) + ⋯+ ∅𝑇−1𝛿(𝑇 −
1) + ∅𝑇𝛿(𝑇). 
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1. INTRODUCTION 

This study is concerned with the estimation of the nominal yield curve and the 

associated discount function by means of integral transform approach while focusing 

on a model of the forward rate curve from where the functional form of the yield 

curve could be derived by integrating the specified forward rate function. This 

technique could be explained as a generalization of the commonly employed 

parsimonious form of the yield curve estimation initially proposed in Nelson and 

Siegel (1987). Valuable market information is entrenched in the yield curve such as 

market's expectation on the future trajectory of interest rate analysis. Yield curves are 

not directly observable despite the availability of prices and the yields of bonds in the 

market. To obtain a yield curve directly from the market data, a zero coupon bond 

over a continuum of maturities will be required. Although bonds are issued over a 

defined set of maturities, many bonds for longer term maturities are fixed coupon 

bonds. Consequently, effort to extract yield curve from the bond market requires 

modelling zero rates.  

The yield curve considered here will be specifically based on the extended Nelson-

Siegel model which can be suited to the less liquid and less developed markets similar 

to the Nigerian market. The extended Nelson-Siegel model represents a zero coupon 

parsimonious model which accounts for distinct deformations of the yield curves to 

enable a dynamic evaluation of the market with time varying parameters which can 

be estimated from the market data and representing the curve as a smooth surface. 

It has been assumed that a similar interest rate is applied for discounting cash inflows 

or outflows for all maturities. However, this assumption does not always hold in 

practice since the rates applied for discounting a series of cash-flows at various 

maturities vary. This can be verified by contrasting the actual interest rates on zero 

coupon bonds which disburses a single payment at maturity under no intermediate 

coupon payments. Consequently, these bonds are usually discounted at varying rates 

based on their remaining term to maturity. The term structure of interest rates 

represents the connection between yields on comparable financial instruments of 

varying degree of maturities. A spot rate 𝑆𝑘for maturity 𝑘 periods is an interest rate 

payable on a debt instrument of maturity 𝑘 periods which starts immediately and 

accumulates interest to maturity, 𝑘 ∈ 𝑍+. However, a single forward rate 
 f 

 is an 

interest rate payable on a future debt which begins at time 


 to 
1 

; 
0,1,2,3,... 

 

while a short interest rate is a rate applied to a short interval of time up to a year 

including instantaneous rate over an infinitesimal interval of time. Suppose we apply 

one year as short interest rate to derive forward rate function, we obtain 

             1 1 1 1 2 1 3 ... 1 1
k

kS f f f f k        
                  (1) 

or equivalently; 
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




  


      (2) 

From the continuously compounded interest rate perspective, we let
  

be the spot 

force of interest and 
 

be the forward force of interest to obtain a functional form 

as 

 
 

0

u du

e e



  





        (3) 

       
0 0

1
u du u du

 

   


     
    (4) 

Differentiating both sides we have the first order differential equation 

     
d

d
     


  

      (5) 

2. LITERATURE REVIEW 

In Castello and Resta (2019), the trajectory motion of term structure is defined by the 

yield curves which are potentially obtained from a large number of prices of debt 

instruments. From the author’s view, we see that their information content could be 

encapsulated into a parsimonious number of parameters provided the particular trend 

shown by these curves is identified. Hence the yield curve describes the 

correspondence between interest rates payable on debt instruments with varying time 

to maturity spectrum. Nigeria is currently under the surveillance of institutional 

investors and the recent reforms carried out in the financial sector as part of the 

globalization process constitute an avalanche of economic uncertainties. 

Consequently, examining its yield curve is markedly significant to the regulators, 

government, financial institutions and institutional investors to design pricing and 

hedging strategies against those financial risks so as to quantify financial risks 

associated with portfolios. The yield curve provides the requisite information to 

elucidate the fiscal policies that could be explained in terms of the market expectation 

of fiscal policies and financial market operations over short, medium and long time 

spectrum so as to design economic strategies.  

As observed in Javier (2009), the yield curve therefore elicits instrumental economic 

information in terms of fiscal inputs to simplify institutional regulation such that 

when the nominal yield is estimated, the term structure of interest rate will be 

numerically modelled. The term structure of interest rates is usually obtained from 

the optimized instantaneous forward rates through technical numerical integration 

techniques although irrespective of the numerical process applied, a major limitation 
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associated with modelling yield curves seems to anchor on the argument that they 

usually reflect as many relevant movements in the underlying term structure of 

interest rates. The rationale behind the functional technique is to derive continuous 

forward rate function analytically such that the constructed analytical discount bond 

prices will fit the observed smooth bond price function.  

The models developed in Nelson-Siegel (1987) class, in particular the extended 

Nelson-Siegel in Svensson (1994) assume a continuous function for the instantaneous 

forward rates which seem to satisfy the solution of a second order differential 

equation with constant coefficients. The yield curve as observed in Javier (2009) 

could elicit further economic information in the form of fiscal inputs to ease 

institutional regulation such that the moment the nominal yield is computed, the term 

structure of interest rate will be numerically modelled.  

In Saunders and Cornett (2014); Castello and Resta (2019); Stelios and Avdoulas 

(2020), the term structure of interest rate measures the investor’s return in a market 

income instrument. Although extensive works in Chakroun and Abid (2014); 

Filipovic (2009); Diebold and Rudenbusch (2013); Walli and Bari (2018) Hess 

(2020) ranging from deterministic to stochastic techniques have been researched on 

the term structure of interest rates, their discussions have been impressively centered 

on the advanced economies in America, Canada and Europe but regrettably these 

authors have not deeply examined the emerging economies like Nigerian markets. 

The apparent dearth of contributions on the emerging economies in view of their 

potential fiscal strength capabilities seems to be myopically obscured by these 

researchers because the trajectories of the yield curve of these economies appear to 

exhibit some levels of volatilities with frequent market humps as opposed to the yield 

curve of advanced economies where the yield function is less volatile. Nigeria is 

embarking on some key economic reforms and the current unabated cash crunch are 

drivers of financial risks. Furthermore, the apparent dearth of rich academic literature 

on the term structure plaguing few emerging economies as argued in Chakroun and 

Abid (2014); Walli and Bari (2018); Stuart (2020) marks the evolution of this study. 

Although zero coupon yield rates are commercially furnished by market data vendors, 

they are usually nontransparent and hence may not be trustworthy. 

3. METHODOLOGY 

As a big market player in Africa, it is observed that Nigeria does not have any 

standard technique of measuring its term structure up till now through yield curves. 

As a result of this gap, we shed light on the extended Nelson-Siegel parsimonious 

function that is both smooth and flexible to construct a computational pool of yield 

and forward curve trajectories from where the discount and spot rate functions could 

be derived.  

The first approach is to construct an analytical form of the yield curve and then derive 

the particular yield curve corresponding to the extended Nelson-Siegel. This yield 

curve function is then used to derive the console and the short rates. 
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Suppose  ,f  
defines the forward rate trajectories at current time   with maturity

 . We can partition the interval  , 
into k  equal sub-intervals such that  

k                                       (6) 

 

 

   

 

  

, , 2

, lim 2 , 3
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f f

f f

f k k

 
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   


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 


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 


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       

 
 
 

      
 

 
      

   (7) 
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0

1
, , 1

k

j
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


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
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   (8) 
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1
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k

k
j
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

 
      

 


   (9) 

   
1

, ,f f u u du





 
 


 

      (10) 

For the extended Nelson-Siegel function, the forward rate function is defined as 

  1 1 2

0 1 2 3

1 2

f e e e

  

   
    

 

     
      

   
       (11) 

The parameter 0  defines the asymptote of the zero coupon yield trajectory and 

represents the long run level of interest rates. The factor 1  describes the deviation of 

the forward function from the asymptotic level and represents the variation between 

long term and short term instantaneous forward rates. The factors 2  and 3  govern 

the magnitudes and directions of humps. The factors 1  and 2  

govern the convergence speed of the exponential term and control the maturity at 

which the medium term rates approach their maximum. Extreme values of  1 2, 
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would result in slow decay and determine better fit at long maturity but not in the 

short term when visible curvatures are apparent. Nevertheless low values of  1 2, 
 

decay quickly and consequently a better fit for short maturity but not in the long run.  

Estimating the parameters of the extended Nelson-Siegel essentially requires 

transforming the instantaneous forward rate function into zero rates to price coupon 

bearing bonds. The zero rates is obtained by evaluating the integral of the 

instantaneous forward rates in equation (11) 

Using equation (10), we then construct the yield function  

1 1 2

0 1 2 3

1 20

1
( )

u u uu u
y e e e du  


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  
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  (12) 
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The equation (20) can then be applied to derive the console and the short rates. 

3.1. The Console’s Theorem 

  0lim y  





        (21) 

Proof 

The yield is given by 
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We need to take limit at infinity 
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. .Q E D  

3.2. The Short Rate Theorem 

The short term rate  

  0 2 3lim y      
    (26) 

Proof 

The yield curve rate is 
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Applying the L’Hopital rule to the quotient terms only and take the limit at zero, we 

have 
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Thus the difference between the console and the short rate is given as 

2 3
0

lim ( ) lim ( )y y 
 

   
 

  
     (31) 

. .Q E D  

Following Diebold and Li (2006), we obtain lamda as 1 0.03778   and 

2 0.0669  through unconstrained optimization. 

3.3. Application in Life Insurance Death Benefits 

Suppose an insured purchases a term insurance with maturity dateT . The insured 

receives death benefits at the end of the year of death when the assured dies between 

year m and year 1m . The death benefit is the higher of the investment at time zero 

and the fund value at time of death. However, applying the actuarial assumption to 

the death benefit, then 0

x t x tl dt


 
 lives would die per unit scheme with probability



SLJBF Vol. 7(1); June 2024 

Page | 28  

   
0

1 exp

t

xT x
F t d 

 
   

 


. The benefit at time t  payable upon death will be 

the greater value of tG and tS  

0

gt

tG S e         (32) 

The benefit t at time t  is given as 

t t t

t

t t t

S if S G

G if S G



 

       (33) 

 max ,t t tG S 
       (34) 

 max ,0t t t tG S S   
      (35) 

 t t t tG S S


  
       (36) 

tG
 is the death benefit guaranteed level interest rate g  per unit investment over time 

while tS  is the value of the underlying equity investment at time t  representing the 

accumulation function from time 0  to t  where we assume 0 1S 
. 

3.4. The Present Value of Future Benefits 

This paper has implications on life assurance products marketed by life offices 

associated with minimum guaranteed benefits schemes for the assured. Based on the 

terms and conditions of the contract, the assured life pays regular premium investible 

in market debt instruments and consequently, receives benefit at death or at maturity 

of the policy depending on the market performance of the fund. Nevertheless, there 

is a guaranteed benefit which the assured earns irrespective of the performance of the 

life fund. The life office is then obliged to pay the guaranteed sum even if the benefit 

at maturity or death eventually becomes smaller than the guaranteed sum, although 

this represents a risk that is usually built into the contract. The present value of the 

future death benefits is expressed as 

       1 2 11 2 ... 1T TPVFB T T           
   (37) 

where   
is the discount rate function and   is the benefit. The discount rate shows 

the needed rate of return from the bond. The needed rate of return is the addition of 
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the yield on bonds which are free of default uncertainties and a risk premium that 

characterizes the default risk of the bond being valued. 

         
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where  

0

x x t x tl l dt
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is the survival function at age x  
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where    1,2x GM 
 is the chosen mortality intensity 
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Suppose  1,2GM
 is the mortality intensity   xx A BC  

 where A , B and C
are parameters of the mortality law, then the integrated hazard of mortality is 
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The total severity is obtained as 
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3.5. Estimation and Data Analysis 

The classical term structure hypothesis suggests that the smooth yield curve  y 
be 

estimated from the observed bond prices. Recently, the common approach is to 

compute the implicit forward rates needed to price successive longer maturity bonds 

at the observed maturities. The smoothed forward rate function is hence derived by 

fitting a parsimonious functional form to the unsmoothed rates. The unsmoothed 

forward rates could be transformed to the unsmoothed yield through averaging. We 

observe currently that minimizing the price errors ultimately leads to grossly large 

yield errors for bonds particularly bonds with short and medium maturities. This is 

because prices are most insensitive to yields for short maturities.  

Consequently, it is more reasonable to estimate parameters so as to minimize yield 

errors. In financial modelling, the emphasis is on interest rates rather than prices and 

as such, it is more reasonable to minimize errors in the yield rather than minimizing 

errors in the price. To obtain the parameters of the extended Nelson-Siegel model, we 

estimate the parameters as such to minimize the sum of squared errors between the 
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estimated yields 
Ey and observed yields to maturity y and hence we can write 

 
2

1

arg min
i

p
E

i i i

i

y y





 
.  

The data presented involves the daily closing of the Nigerian Eurobond yield which 

comprises data from January to December 2021 and 2022 to be analyzed using 

descriptive statistics in fitting the observed Nigerian Eurobond yield curve under the 

extended Nelson-Siegel model structure. The data for the twelve months for both 

2021 and 2022 were analyzed and the resulting findings were also depicted in curves 

and tabular forms to incorporate other statistics not captured on the curve and also to 

enhance easy access to the statistical values and corresponding graph are shown in 

Table 1 and figure 1 for the first three quarters. 

Table 1: First three quarters descriptive statistics-2021 

Tenors (𝝉) N Minimum Maximum Mean Std. Deviation 

One year 166 .84 6.22 2.0292 .64054 

Two years 166 2.26 2.98 2.6323 .15806 

Four years 166 3.88 4.82 4.2375 .15617 

Six years 166 4.71 5.83 5.2816 .20958 

Nine years 166 5.67 7.04 6.2206 .20969 

Ten years 166 6.14 7.24 6.6915 .21741 

Eleven years 166 6.24 7.43 6.7980 .21563 

Seventeen years 166 6.80 7.88 7.3502 .20490 

Twenty-six years 166 6.95 7.97 7.4861 .20316 

Twenty-eight years 166 7.39 8.42 7.8931 .15832 

   Source: Authors’ computation 

 

 
Figure 1: First three quarters’ yield curve 
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This observed data analyzed descriptively consisted of the first three quarters of the 

year 2021. The data was separated from the fourth quarter due to the increase of 

additional tenors as recorded. The three quarters contained 10 tenors which are one 

year, two years, four years, six years, nine years, ten years, eleven years, seventeen 

years, twenty-six years and twenty-eight with corresponding yield of  

2.0292,  2.6323,  4.2375,  5.2816,  6.2206,  6.6915,  6.7980,  7.3502,

 7.4861  7.8931and

 
 
   

 Respectively. The slope of the yield curve is upward sloping; therefore, it can be 

concluded that the relationship between tenors and yields is directly proportional. In 

Table 2 below, the last quarter of 2021 is significant because there were additional 

tenors that appears as recorded. The quarter contains 13 maturities (tenors) which are 

One year, Two years, Four years, Six years, Seven years, Nine years, ten years, eleven 

years, twelve years, seventeen years, twenty six years, twenty eight years, and thirty 

years with corresponding yield as; 

2.1195,  3.6437,  5.2924,  6.1897,  6.4153,  7.1320,  7.6881,  7.7216,

 7.6664,  8.2340,8.3439,  8.7784,   8.5303and

 
 
   

respectively. The yield in this quarter as depicted by the figure above is consistently 

sloping upward with a decline on twelve years maturity. Therefore, we can conclude 

that as maturity increases, yield also increases. 

Table 2: Fourth quarter descriptive statistics-2021 

Tenors (𝝉) N Minimum Maximum Mean Std. Deviation 

One year 58 1.48 3.43 2.1195 .33856 

Two years 58 2.94 4.36 3.6437 .34460 

Four years 58 4.67 6.02 5.2924 .40861 

Six years 58 5.76 6.85 6.1897 .31858 

Seven years 58 5.98 7.14 6.4153 .33007 

Nine years 58 6.75 7.85 7.1320 .31443 

Ten years 58 7.26 8.39 7.6881 .33013 

Eleven years 58 7.29 8.47 7.7216 .35613 

Twelve years 58 7.19 8.45 7.6664 .34597 

Seventeen years 58 7.80 8.88 8.2340 .31403 

Twenty-six years 58 7.92 8.97 8.3439 .29639 

Twenty-eight years 58 8.41 9.36 8.7784 .29491 

Thirty years 58 8.12 9.15 8.5303 .30737 

Source: Authors’ computation 
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Figure 2: Fourth quarter yield curve 

Figure 2 show the zero-coupon yield curve when the parameters are fitted to the 

average yield curve in the fourth quarter. The average yield to maturity is increasing 

over maturities, we then infer that the data set is consistent with the condition that the 

yield curve over time is increasing and concave. The essence is to justify and validate 

the construction of the extended Nelson-Siegel model. 

Table 3: Descriptive statistics-2022 

Tenors (𝝉) N Minimum Maximum Mean Std. Deviation 

One year 241 2.76 10.89 6.5488 2.02279 

Three years 241 4.94 13.82 9.4788 2.60400 

Five years 241 6.10 15.44 10.6853 2.57722 

Six years 241 6.47 15.61 10.8068 2.52283 

Eight years 241 7.28 15.99 11.2024 2.39675 

Nine years 241 7.84 15.99 11.6304 2.24195 

Ten years 241 8.01 16.88 11.6191 2.19466 

Eleven years 241 .00 15.55 11.3677 2.21467 

Sixteen years 241 8.50 15.21 11.7122 1.81228 

Twenty-five years 241 8.60 14.83 11.4600 1.60907 

Twenty-seven years 241 9.06 15.67 11.9866 1.70691 

Twenty-nine years 241 .42 15.40 11.7561 1.88498 

Source: Authors’ computation 
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Figure 3: Observed yield curve for 2022 

The 2022 statistics consisted of twelve tenors which are one year, three years, five 

years, six years, eight years, nine years, ten years, eleven years, sixteen years, twenty 

five years, twenty even years and twenty nine years which from the descriptive 

analysis has an average yield of  

6.5488,  9.4788,  10.6853,  10.8068,  11.2024,  11.6304,  11.6191,

 11.3677,  11.7122,11.4600,  11.9866  11.7561and

 
 
   

respectively. The overall statistics experience a higher level of changes which can be 

described as a measure of risk on the bond market. These can be attributed to the 

numerous data volatilities over the observed monthly market operations which 

provoked such behavior. It is imperative to note that the trading yield over the months 

are not the same. Some months have higher trading yield while others lower trading 

yield which significantly affect the variation in the data. The aggregate yield curve of 

observed yield for the year 2022 as depicted on the Figure 3 revealed that the yield 

curve is sloping upwards giving an increase of time to maturity. However, there was 

a decline as experienced on the nine years tenor to ten years before the observed 

upward movement and a decline in twenty five years tenor and a rise on twenty seven 

whereas there is a decline at the last tenor. Despite the noticeable fluctuations 

experienced over some tenors, we can conclude that the overall yield curve is upward 

sloping. 

3.6. Predicting the In-Sample Yield of 𝝉 

The extended Nelson-Siegel four-factor model parameters as established in the 

previous section for yield analysis in respect of the observed data for the year 2021 

and 2022 can be used for the prediction of in-sample tenors but not captured in the 

observed data given the parameters. The parameters were estimated using the 



SLJBF Vol. 7(1); June 2024 

Page | 36  

ordinary least square method. For this study, we used the value 0.03778 and 0.0609 

for 𝜆1 and 𝜆2 respectively. The results obtained are presented on table below. 

Table 4: Model Parameters 

First 3 

quarters 

2021 

Unstandardized Coefficients Standardized Coefficients T Sig. 

B Std. Error Beta 

1 𝛽1 8.388 .152  55.048 .000 

𝛽2 -6.104 .707 -.731 -8.635 .000 

𝛽3 3.451 2.150 .128 1.605 .160 

𝛽4 -8.911 3.227 -.379 -2.762 .033 

Last 

quarter 

2021 

Unstandardized Coefficients Standardized Coefficients T Sig. 

B Std. Error Beta 

1 𝛽1 9.312 .168  55.470 .000 

𝛽2 -9.166 .905 -1.035 -10.124 .000 

𝛽3 -.550 2.554 -.021 -.216 .834 

𝛽4 1.365 4.056 .057 .337 .744 

2022 Unstandardized Coefficients Standardized Coefficients T Sig. 

B Std. Error Beta 

1 𝛽1 11.879 .176  67.590 .000 

𝛽2 -8.165 .917 -1.164 -8.905 .000 

𝛽3 6.014 2.804 .318 2.145 .064 

𝛽4 .991 4.352 .054 .228 .826 

Source: Authors’ computation 

From the Table 4, the parameters estimated were substituted into the model in order 

to estimate the in-sample maturities that were not captured on the observed data. 

Since the in-sample yield does not exceed a maturity of more than twenty-nine years 

and thirty years for 2021 and 2022 respectively, we write the model given a 

conditional statement for in-sample estimation of yield as follows: For the first three 

quarters 2021.  

Let 𝜏 be the current time and suppose 𝑓(𝑢) represents the forward rate function at 

time t + u. Then the current price of a zero coupon bond maturing at par, at time 𝑡 +

𝜏 is given by 𝛿(𝜏) = 𝑒𝑥𝑝(−∫ 𝑓(𝑢)𝑑𝑢
𝜏

0
). Consequently, the yield 𝑦(𝜏) and the price 

𝑝(𝜏) of the bond as well as the forward rate function 𝑓(𝑢) all satisfy the relation 

𝜏𝑦(𝜏) = ln 𝑝(𝜏) = ∫ 𝑓(𝑢)𝑑𝑢
𝜏

0
. 

From the discount function 𝛿𝑡(𝜏) = 𝑒𝑥𝑝{−𝜏𝑦𝑡(𝜏)}, we obtain 
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where 0 336  . For the fourth quarter 2021 
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where 0 360   

For all quarters in 2022  
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0 ≤ 𝜏 ≤ 360. The comparative yield for observed data and the in-sample prediction 

using the above model is presented below: 

Figure 4: Predicted yield curves 2021 first three quarters 

 

 

 

  

Figure 5: observed and predicted yield curves 2021 last quarter 
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Figure 6: Observed and predicted yield curves 2022 

3.7. Fitting the Model into the Observed Data 

The measure of goodness of fit analysis is determined when ordinary least square 

method is applied on data by 𝑅 square, 𝑅2 adjusted and standard error estimation. 

The model measure of fit analysis is depicted in table below. 

Table 5: Model Summary 

First 3 

quarters 

2021 

R R 

Square 

Adjusted R 

Square 

Std. Error of the 

Estimate 

Durbin-

Watson 

 .999a .997 .996 .13653209 2.454 

Last quarter 

2021 

R R Square Adjusted R 

Square 

Std. Error of the 

Estimate 

Durbin-

Watson 

 .997a .994 .992 .18389683 1.982 

2022 R R Square Adjusted R 

Square 

Std. Error of the 

Estimate 

Durbin-

Watson 

 .995a .989 .985 .18325833 .989 

Source: Authors’ computation 

The 𝑅 square defines the degree in which the independent variable fits in the 

dependent variable, it determines how well the model was able to predict the observed 

dependent variable. For this study, the unobserved variable was able to define the 

observed yield with a high degree of accuracy. As seen from the table above, the 𝑅 

square for the first three quarters of 2021 , last quarter of 2021 and the overall yield 

of 2022 are 0.999, 0.997 and 0.995 respectively and the adjusted 𝑅 square of the study 

scope as 0.996, 0.992 and 0.985. When using the results of adjusted 𝑅 square values, 

it can be inferred that the model fits in the observed yield by 99% for the first three 

quarters of 2021, 99% for the last quarter 2021 and 98% for 2022. By these, the model 

can be used for estimation and prediction of yield. 

3.8. The Effect of the Time to Maturity on Term Structure of Interest Rate 

Theoretically, the relationship that existed between time to maturity or tenors of a set 

of a bond and its corresponding yield is referred to as the term structure of interest 
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rate. To determine whether time to maturity has an effect on the term structure of 

interest rate, we used correlation between time to maturity and its corresponding yield 

as presented in the table 6 using the data set of 2021. 

Table 6: Correlation Analysis 

 Yield Tenor in Years 

Yield Pearson Correlation 1 .847** 

Sig. (2-tailed)  .002 

N 10 10 

Tenor in Years Pearson Correlation .847** 1 

Sig. (2-tailed) .002  

N 10 10 

Source: Authors’ computation 

The Pearson correlation determines the degree to which the movement of tenors and 

yields are associated. The above table reveals that the correlation is significant given 

the confidence level of significance as 0.01. The correlation revealed a positive 

relationship between tenors and its corresponding yield. The correlation value of 

0.847 means that 84.7% of the data explains the degree to which the tenor and yield 

correlate in a positive direction. The observed curves shown in this study also 

indicated that the slope of yield against its tenors is moving directly proportionally. 

That is, when the tenor increases, the corresponding yield also increases in 

percentage. We can conclude that time to maturity has a significant effect on the term 

structure of interest rate. 

4. RESULTS AND DISCUSSION 

From equation (37) using the first three quarters in 2021 for example, we have 
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  (61) 

While for the fourth quarter in 2021. 
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However, using the combined 4 quarters in 2022, we have 
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  (63) 

The analysis of the Nigerian Eurobond yield for the years 2021and 2022 includes 

descriptive analysis for the daily trading of the Nigerian Eurobond, the model analysis 

of extended Nelson-Siegel four factor model as well as correlation analysis. From the 

descriptive statistics obtained, the mean yield increases in direct proportional to tenor 

and consequently the yield increases as tenor increases. By this, we can confirm the 

market condition that the higher the risk, the higher the expected return. The risk in 

this case involves the long-term maturity that there is a higher risk on long-term 

securities in general. These risks include interest rate changes and rising inflation that 

depreciates the value of money value. The extended Nelson-Siegel four factor model 

was estimated using the quadratic loss function method. The unobserved variables 

become the independent variable whereas the observed yield becomes the dependent 

variable. The results of the four-factor parameters computed were substituted into the 

model so as to obtain a solution for predicting the in-sample yield of the tenors not 

captured in the observed yield. The model goodness of fit was tested in order to find 

how well the model fits in the observed data yield to assume its prediction capability. 

The output result came out with a high level of fit which was evidence from the 𝑅 

square adjusted for both 2021 and 2022 given an average of 99%. From this we can 

conclude that the extended Nelson-Siegel four factor model can be used for the 

analysis and prediction of yield. The correlation analysis was able to verify the 

relationship that existed between tenors and their corresponding yield. The result 

shows a positive relationship which confirms the direct proportionality. Figures 7-14 

describes the trajectories of the predicted model parameters while Tables 7-14 

describe the values of the predicted model parameters. 
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4.1. The Impact of the Console and Short Rate on the Associated Exponential 

Terms 

The following limiting results were obtained from the coefficients of 𝛽𝑖. 
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4.2. Analysis Using Different Values of the Model Parameters 

4.2.1. Predicted Yield at Different Values of 𝛽1 

 

Figure 7: Predicted yield curve for 2021 at different values of 𝜷𝟏  
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Table 7: Different values of 𝜷𝟏 

𝜷𝟏=8.388  𝜷𝟏=9.388  𝜷𝟏=10.388  𝜷𝟏=11.388  𝜷𝟏=12.388 

2.030682 3.030682 4.030682 5.030682 6.030682 

2.633049 3.633049 4.633049 5.633049 6.633049 

4.195382 5.195382 6.195382 7.195382 8.195382 

5.353794 6.353794 7.353794 8.353794 9.353794 

6.349906 7.349906 8.349906 9.349906 10.34991 

6.55947 7.55947 8.55947 9.55947 10.55947 

6.730821 7.730821 8.730821 9.730821 10.73082 

7.325151 8.325151 9.325151 10.32515 11.32515 

7.693924 8.693924 9.693924 10.69392 11.69392 

7.743513 8.743513 9.743513 10.74351 11.74351 

Source: Authors’ computation 

 
Figure 8: Predicted yield curve for 2021 at different values of 𝜷𝟐 

Table 8: Different values of 𝜷𝟐 

𝜷𝟐=-6.104   𝜷𝟐=5.104  𝜷𝟐=-4.104  𝜷𝟐=-3.104  𝜷𝟐=-2.104 

2.030682 2.834703 3.638723 4.442744 5.246764 

2.633049 3.290532 3.948016 4.605499 5.262982 

4.195382 4.656885 5.118388 5.579891 6.041394 

5.353794 5.697206 6.040618 6.384031 6.727443 

6.349906 6.590847 6.831787 7.072728 7.313669 

6.55947 6.777676 6.995881 7.214087 7.432293 

6.730821 6.929975 7.129129 7.328283 7.527437 

7.325151 7.454843 7.584534 7.714226 7.843918 

7.693924 7.77876 7.863596 7.948432 8.033268 

7.743513 7.82229 7.901067 7.979843 8.05862 

Source: Authors’ computation 
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Figure 9:Predicted yield curve for 2021 at different values of 𝜷𝟑 

Table 9: Different values of 𝜷𝟑 

𝜷𝟑=3.451  𝜷𝟑=4.451  𝜷𝟑=5.451  𝜷𝟑=6.451  𝜷𝟑=7.451 

2.030682 2.199213 2.367745 2.536276 2.704807 

2.633049 2.886685 3.140322 3.393959 3.647596 

4.195382 4.493793 4.792204 5.090615 5.389026 

5.353794 5.631342 5.90889 6.186438 6.463986 

6.349906 6.573943 6.797981 7.022018 7.246056 

6.55947 6.766934 6.974398 7.181861 7.389325 

6.730821 6.923148 7.115476 7.307804 7.500132 

7.325151 7.454393 7.583635 7.712877 7.84212 

7.693924 7.778752 7.86358 7.948409 8.033237 

7.743513 7.822287 7.90106 7.979834 8.058608 

Source: Authors’ computation 

 
Figure 10: Predicted yield curve for 2021 at different values of 𝜷𝟒 
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Table 10: Different values of 𝜷𝟒 

 𝜷𝟒=-8.911  𝜷𝟒=-8.911  𝜷𝟒=-8.911  𝜷𝟒=-8.911  𝜷𝟒=-8.911 

2.030682 2.258623 2.486563 2.714504 2.942444 

2.633049 2.926728 3.220407 3.514086 3.807764 

4.195382 4.465321 4.735259 5.005197 5.275135 

5.353794 5.566547 5.779299 5.992051 6.204804 

6.349906 6.500343 6.65078 6.801217 6.951654 

6.55947 6.695544 6.831619 6.967693 7.103768 

6.730821 6.854855 6.978888 7.102922 7.226956 

7.325151 7.405638 7.486126 7.566614 7.647101 

7.693924 7.746553 7.799182 7.851812 7.904441 

7.743513 7.792383 7.841254 7.890124 7.938994 

Source: Authors’ computation 

4.2.2. Predicted Yield at Different Values of 𝛽1 

 
Figure 11: Predicted yield curve for 2022 at different values of 𝜷𝟏  

Table 11: Different values of 𝜷𝟏 

Source: Authors’ computation 

𝜷𝟏1=1.879 𝜷𝟏1=2.879 𝜷𝟏1=3.879 𝜷𝟏1=4.879 𝜷𝟏1=5.879 

6.553608 7.553608 8.553608 9.553608 10.55361 

9.450829 10.45083 11.45083 12.45083 13.45083 

10.64366 11.64366 12.64366 13.64366 14.64366 

10.95505 11.95505 12.95505 13.95505 14.95505 

11.30789 12.30789 13.30789 14.30789 15.30789 

11.40816 12.40816 13.40816 14.40816 15.40816 

11.47989 12.47989 13.47989 14.47989 15.47989 

11.53248 12.53248 13.53248 14.53248 15.53248 

11.66316 12.66316 13.66316 14.66316 15.66316 

11.74339 12.74339 13.74339 14.74339 15.74339 

11.75347 12.75347 13.75347 14.75347 15.75347 

11.76214 12.76214 13.76214 14.76214 15.76214 
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Figure 12: Predicted yield curve for 2022 at different values of 𝜷𝟐 

Table 12: Different values of 𝜷𝟐 

𝜷𝟐-=8.165 𝜷𝟐-=7.165 𝜷𝟐=-6.165 𝜷𝟐-5.165 𝜷𝟐-=4.165 

6.553608 7.357629 8.161649 8.96567 9.76969 

9.450829 9.997385 10.54394 11.0905 11.63705 

10.64366 11.03909 11.43451 11.82994 12.22537 

10.95505 11.29846 11.64187 11.98529 12.3287 

11.30789 11.57627 11.84466 12.11304 12.38143 

11.40816 11.6491 11.89004 12.13098 12.37193 

11.47989 11.69809 11.9163 12.1345 12.35271 

11.53248 11.73164 11.93079 12.12995 12.3291 

11.66316 11.80093 11.93869 12.07645 12.21421 

11.74339 11.83162 11.91985 12.00808 12.09631 

11.75347 11.83516 11.91686 11.99855 12.08025 

11.76214 11.8382 11.91426 11.99032 12.06638 

Source: Authors’ computation 

 
Figure 13: Predicted yield curve for 2022 at different values of 𝜷𝟑 
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Table 13: Different values of 𝜷𝟑 

𝜷𝟑=6.014 𝜷𝟑=7.014 𝜷𝟑=8.014 𝜷𝟑=9.014 𝜷𝟑=10.014 

6.553608 6.72214 6.890671 7.059202 7.227733 

9.450829 9.740745 10.03066 10.32058 10.61049 

10.64366 10.93544 11.22723 11.51901 11.8108 

10.95505 11.2326 11.51015 11.78769 12.06524 

11.30789 11.54967 11.79146 12.03325 12.27503 

11.40816 11.6322 11.85624 12.08027 12.30431 

11.47989 11.68735 11.89481 12.10228 12.30974 

11.53248 11.72481 11.91714 12.10947 12.30179 

11.66316 11.80022 11.93727 12.07433 12.21138 

11.74339 11.83161 11.91982 12.00804 12.09626 

11.75347 11.83516 11.91685 11.99854 12.08023 

11.76214 11.8382 11.91426 11.99032 12.06638 

Source: Authors’ computation 

 
Figure 14: Predicted yield curve for 2022 at different values of 𝜷𝟒 

                    Table 14: Different values of 𝜷𝟒 

Source: Authors’ computation 

𝜷𝟒 =0.991 𝜷𝟒 =1.991 𝜷𝟒 =2.991 𝜷𝟒 =3.991 𝜷𝟒 =4.991 

6.553608 6.781549 7.009489 7.23743 7.46537 

9.450829 9.744377 10.03792 10.33147 10.62502 

10.64366 10.88436 11.12506 11.36576 11.60646 

10.95505 11.1678 11.38056 11.59331 11.80606 

11.30789 11.47555 11.64321 11.81087 11.97853 

11.40816 11.5586 11.70904 11.85947 12.00991 

11.47989 11.61596 11.75204 11.88811 12.02418 

11.53248 11.65652 11.78055 11.90458 12.02862 

11.66316 11.74868 11.83419 11.9197 12.00522 

11.74339 11.79812 11.85286 11.90759 11.96233 

11.75347 11.80415 11.85483 11.90551 11.95619 

11.76214 11.80933 11.85651 11.9037 11.95088 
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5. CONCLUSION 

The application of forward interest rates serves to be a benchmark financial tool in 

pricing new market instruments. Though the adoption of yield curves is recognized 

in monetary policies, its use in financial analysis is yet to be discovered in Nigeria 

market. Motivated by the central role assumed by the term structure of interest rates 

in the Nigerian economy, we examined the forward rate function of the extended 

Nelson-Siegel parsimonious function through comprehensive mathematical analysis 

when applied to the Nigerian Eurobond. The forward rate function then becomes the 

instantaneous interest rate locked at a previous time   for a subsequent investment 

decision. In this paper, the analysis was conducted under the following key result 

areas (i) the discount function and applied on the present value of benefits (ii) the 

yield function. From the parsimonious perspectives, we explained the use of time 

varying exponentially decay terms to ascertain more flexible parsimonious 

parameters so as to obtain accurate estimating results and to reflect the market 

operators’ views on interest rate levels in a forward looking dimension. Obviously, 

the efficacy of the extended Nelson-Siegel model is a function of how precise the 

model fits the yield curve at each date and on how well the factors can be forecast 

from their resulting time series. Consequently, we highlight the following 

weaknesses. The extension is challenging as there are two 𝜆′s that were estimated and 

the analytical form suffers from the problem of degeneracy where the factors 𝜆1 and 

𝜆2 are equivalent. Furthermore, when 𝜆1 ≠ 𝜆2, the specified functional form results 

in an underlying parameter estimation difficulty which is no longer mathematically 

convenient because it will hence involve many dimensional minimization. Despite 

the weakness observed, the extended Nelson-Siegel model is notably distinguished 

through its empirical analysis of the parameters which change with time. The straight 

forward analysis of its few parameters estimation seems consistent with the illiquid 

and under developed markets such as Nigeria. Relatively, in this study, it has been 

used for the construction of a smooth surface curve and for the modelling of different 

deformations of the curve. From the computed results of the highly flexible 

estimation technique, we emphasized the in-sample potential of the extended Nelson-

Siegel in the Euro-bond market and recommend that the parsimonious model can be 

presented as an interventionist investment tool during volatile market conditions. 
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